Cost Reduction Through the use of Web Based Applicationsin the Mission Operations Center

Michael Packard', Dennis Whichard', P. J. Clark’

i The Johns Hopkins University / Applied Physics Laboratory

11100 Johns Hopkins Rd.
Laurel, MD 20723
Michael.Packard@jhuapl.edu
ii Interface & Control Systems, INC
8945 Guilford Road, Suite 120
Columbia, MD 20146
dennis@interfacecontrol.com
iii Patrick Clark
Dewitt & Associates
JHU/APL MS M6-110
11000 John Hopkins Road
Laurel, MD 20723
240-228-7666
patrick.clark@jhuapl.edu

Abstract

Even though many organizations utilize Commercial off
the Shelf (COTS) products as the core of their mission
operations and control centers, the user is almost
invariably required to produce ancillary and interface
software in support of the mission operations team.
Although many of these custom products are reusable from
mission to mission, each mission is usually unique in one
or more aspects that result in some software design and
deployment effort.

We are implementing the use of a web based design
paradigm, which utilizes Open Source Software/Free
Software (OSS/FS) as the basis for these products in the
TIMED Mission Operations Center. We have found that
this paradigm can substantially reduce the cost of the
development, use and maintenance of this type of software
and at the same time greatly facilitate its reuse in multiple
missions.

We will describe the design of 3 web based products for
use in the mission control center and specifically in the
areas of conducting mission operations, data processing
and archiving, and spacecraft contact and ground asset
scheduling.

There exists a plethora of OSS/FS operating systems,
relational databases, server applications and scripting
languages that can be used as the basis for the proposed
software applications. It should also be noted that the
hardware cost to implement the designs we are proposing
is quite modest. Furthermore, the use of scripting
languages such as PHP and Perl, with their rich libraries
for text parsing, communications and database
manipulation, considerably speed development time and
can result in applications that can be easily maintained.

The use of a web based paradigm replaces the
development of GUI based applications using X or
Microsoft MFC or other GUI development systems since
all user interfaces are implemented via web browsers.
This in itself can considerably reduce development costs
since all GUI’s are implemented using HTML and
possibly Javascript. Also, in the case of the mission
operations application we intend to describe, the cost of
COTS licenses could potentially be reduced since fewer
licenses may be required.

Since this proposal calls for the use of web based
applications, it can be seen that access to the applications
by the user would not necessarily have to be conducted
only in a mission operations center. Through the use of
Virtual Private Networks, Secure Sockets Layer, or other
secure protocols, access to the applications could be
conducted from a user’s office or even off campus
allowing the mission operations team to be in
geographically diverse locations. This could also result in
considerable cost savings. Also, since the interface to the
applications is via a web browser, an interface quite
familiar to most potential users, training costs and even
documentation costs could be considerably reduced.

The 3 systems we intend to describe are in use or being
developed for the TIMED Mission:

1) A web based data processing and archiving system.

2) A web based spacecraft contact and asset scheduling
system.

3) A web based interface to COTS mission operations
products.

1. Introduction

Web Based Applications (WBA) are software applications
that interact with the user using traditional web pages or
forms on a web browser. Using WBAs can reduce the cost
of developing software used in mission control and
operations centers. This interface is quite familiar to
people in spacecraft operations as well as those developing
the applications. They can easily solve a large range of
software needs for the users.

We will first outline the reasons why WBASs reduce cost.
Then we will describe three WBAs developed or being
developed for the Thermosphere lonosphere Mesosphere
Energetics and Dynamics (TIMED) mission. The
description will entail what the application is to do. The
description will then give some details and comparisons
between the development cycle of a WBA and a more
traditional application.

2. Design Selection

WBAS can be used in a large range of applications since
they are not dissimilar from the traditional applications
that store and retrieve data for the user. Ina more
traditional approach, the data is stored in a large database.
This database can either be written specific for the
application or Commercial Off The Shelf (COTS). The
user retrieves, edits, deletes, and adds to the database with
an application. In many cases, the application has a
graphical interface, especially if developed on PC’s.
Many older applications also rely on textual interfaces,
which have forms to be filled out for data editing and
manipulation. Reports are then generated to display the
data. WBAs are just another approach in designing the
interface for the user.

WBA s are not best for all software applications. Their
strengths are in static data displays or interfaces to
databases such as planning or assessment tools. They do
not work well when there is rapidly changing information
or rapidly changing graphics. However, this is possible
using Java scripts and more powerful client machines. We
will be addressing more of the static data types of
applications.

The structure of a WBA is simple. First, there is a central
server that houses the actual application and data. Next is
the client that only has to supply a web browser. They can
even exist on the same machine, but in most cases will
reside on different machines.

3. Cost Benefits

There are two main reasons WBAS can have significant
cost reducing benefits. The first is the cost of the
operating system, development environment, web server,
and database server can be nearly free or completely free.
The software is referred to as Open Source Software/Free
Software (OSS/FS). The second cost reducing benefit is a
simpler development cycle, since the web browser
provides the GUI or interface and the programming
language is a script language tailored for data handling and
web applications.

The first reason WBAs produce cost savings is from the
environment of the application. This environment is the
hardware, the operating system, the development tools, the
web server, and the database server. For each of the
software segments of the environment, OSS/FS is
available and in wide use. Each software segment will be
addressed and examples will be given for a suitable
application. OSS/FS software is not the only choice
available for the users and developers. Other types of
software are COTS, or in—house written software. These
will be also mentioned, but do not usually give a reduced
cost for the application.

The OSS/FS operating systems are either a Linux
distribution such as Red Hat, Debian, Slackware, or many
others, or the modern BSD operating systems such as
FreeBSD, NetBSD, or OpenBSD. At most, there is a
medium and shipping cost that is usually below $100.
These operating systems can also be easily downloaded
from the provider’s web site and burned onto CDs. The
downside to these operating systems is little corporate
assistance from the operating system’s providers. Support
can be supplied if needed and purchased. The lack of
assistance is easily overcome with training and access to
the web in the form of FAQ’s and news chats. In essence
the corporate assistance has moved away from the
organization developing and selling the product to a large
user base that will have intricate knowledge of the design
and use of the operating system. In addition, these
operating systems have a number of published books
describing their use and administration. Furthermore, the
operating systems are very close to or are Unix operating
systems. Therefore, the in—house technical services will
have knowledge and expertise in maintaining the operating
systems. Lastly, these operating systems have been
around for more than a decade. They have become simple
to install, maintain, and operate as well as being robust
operating systems. The user and developer will not have
to invest much time or money in getting the operating
system up and running.

Alternatively, COTS operating systems can be used.

These are the commercial Unix operating systems such as
Solaris, Ultrix, or many others, or VMS from DEC, OS/X
from Apple, or finally Windows 95/98/2000/XP from
Microsoft. For a specific mission, there may not be costs
associated with the operating system since the
organization operating the satellite may have site license
or large number of licenses for the operating systems. The
cost may be accrued from maintenance cost or licensing
fees.

Once the operating system is running and configured, the
WBA can then have its environment built, such as the web
server and the database server. The web server provides
the connection between the user client and the WBA. The
primary OSS/FS web server is Apache. Again, as in the
operating systems, there is little corporate assistance on
the web server, but licensing can be set up for support. If
further help is still required, as in the operating systems,
there is a large amount of help and expertise available on
the web in the form of FAQs and news groups. Also, the
web server has many books published on it describing its
use and administration. This web server has been
available for a long time and is reliable and easily
maintained. Fortunately, the web server is simple to set up
and maintain. The setup will not be complicated for most
satellite operations centers, and this setup will not change
significantly for the life of a mission. For most WBAS, a
developer will not need to spend more than a few days
setting up the web server and making it available to both
the users and other developers. If a developer has prior
experience on Apache, the set up could take as little as a
few hours.

The COTS web servers are typically not suitable since
they are expensive and designed for large simultaneous
client connections. They can be used but are overkill.

After the operating system is running; the database server
can be installed and setup, at the same time as the web
server. Again, there are several OSS/FS database servers
such as MySQL, PostgreSQL, or MSQL. Again, the free
nature does not provide a large corporate assistance, but
the use of FAQ’s, simple training, and news groups allows
for the administration of the database. In addition, these
database servers have many books published describing
their use and administration. Again, much like the
operating systems, many of these databases have been
around for close to a decade. In some of these cases, a
license may be purchased from the developer if the
database is used in a commercial or business environment.
This cost is still low, less than $1,000. If there is a
licensing fee, then technical help is available from the
development team.

There are many COTS database servers, such as Access
from Microsoft or Oracle may be available. These may
have no direct cost to the individual missions as the

organization may have licenses for the applications.

Lastly, the development environment can also be found
with OSS/FS. This is not as much of a concern since
either the operating system or the database server may
provide most of the development environment needed for
the WBA. There may be other tools such as configuration
management or design cycle tools. The database server or
the operating system, again, can also provide these. These
tools may also be provided by the organization to unify the
development process across all application developments.

The cost savings need not be limited to the software
portions of the WBA. The hardware requirements
typically will also be low. For this to be true, the
application can not require large simultaneous client
connections, which is typically true for operating satellites.
The server will not need to have a high—end processor.
This would come into play for a server that involves data
analysis and storage for a department or company. For our
approach, the number of client connections is small,
simply the operations for a single, or cluster of satellites.
The client connections base is quite often less than 10. A
larger server would be required if multi-mission design is
attempted. WBAS also can serve this roll, but become
more troublesome if each mission has its own security
guidelines. In addition, the server for the WBA has little
display requirements; a very modest display can be used.
This primarily needs to be used during installation and
setup. From that time forward, all access to the server can
be made remotely. This applies to the final application,
development, and maintenance.

The second large cost reducing benefit from WBAS can be
found in the development cycle. The savings are found for
two primary reasons. The first reason is GUI development
is not needed for WBAs. The web browser supplies the
actual interface. The WBA only needs to write HTML to
represent the interface. The second reason can be found in
using a powerful high level scripting language to write the
WBA in. The scripting language will have easy and rich
libraries for text parsing, communications, and database
manipulation that will reduce considerably the
development time and can result in applications that can
be easily maintained.

The web browser provides the user interface. Therefore,
the WBA need only to generate HTML, which is standard
ASCII text, to interface with the user. The web browser
will correctly render an interface from the HTML. This
interface can be simple or quite complex, but is still only
driven from the HTML. The cost savings in this is the
development of GUIs has now been reduced to
understanding and generating HTML. The development
of GUIs can be a significant portion of time for an
application. In addition, since the web browser is
providing the interface, the WBA has the appearance of a

cross—platform application. This means the client can be
run on any machine that has a web browser suitable for the
WBA. The client can have any of the operating systems
listed above. It does not have the other components
required by the server such as the web server, database
server, nor the development environment. Since the client
only needs to provide a web browser, its requirements are
also modest.

The second reason for reduced development cost in WBAS
is the use of powerful scripting languages for the WBA.
These languages are typically Perl or PHP. Other
languages can be used such as C, C++, Python, Ruby, or
most other typical programming languages that can
generate text output. Perl and PHP both provide very rich
libraries for web development. In both cases, they are
scripting languages, which are compiled at run time. The
scripting languages allow for quick prototype development
that can easily grow into the full application. It is easy to
develop pieces of the application and bring the pieces
together at the end. The individual pieces can be tested
independently or at least have a simple wrapper. In
addition the two languages have very good textual and
data manipulation tools built in, as well as the tools to
work with the database. This saves having to develop the
tools.

Other additional cost saving benefits can also be found by
using WBAs. These savings will not be as large as the two
primary savings already described. Some savings can be
found in the maintenance portion of the application. Here,
the savings is typically found in adding functionality to the
applications. The cause for savings here is for the same
reasons as the development phase. The scripting
languages easily allow new functions to be built in. The
GUI is simple to change in allowing the new functions, in
that the pages and forms can easily be changed to add the
interface. The bug fixes or problem fixes part of
maintenance will not see as much cost savings, but it may
see some. This again comes from the use of the scripting
languages. Since the languages have powerful text and
data manipulation tools built in, the overall code should be
smaller. Since, generally, the number of bugs is related to
the size of the code, the number of bugs should be less.
Furthermore, the scripting languages can be made to be
easily human readable. As long as the original authors
used good readable and maintainable practices in writing
the WBA, they can be easily maintained. This is of course
true with more standard development applications.

Another cost saving benefit from WBAs can be in training.
This is not as significant as the two primary reasons, but
may contribute some savings. The training is for both the
developers and primarily the users. In both cases, the final
user interface is in the form of a web page or form. The
users of the WBA have by now become quite familiar on
the operation and navigation of the web based pages and

forms. The training is now focused on the specific tasks
involved in operations. Little to no training on the actual
user interface is required. This doesn’t mean training for
the application is no longer needed; what is no longer
needed is how the user actually interfaces to the
application, e.g., does he use menus, how are the menu
items selected, etc. Removing the GUI development can
reduce the training for the developers. This savings may
be reduced by the developer’s need to be trained in
HTML, Perl, or PHP. There is no comparison in GUI
development and scripting languages; GUI development
requires more training and expertise.

4. Oper ations Benefits

In addition to cost savings listed above, WBAs also can
provide other benefits. One simple benefit is to glue
various aspects of operations into one more seamless
package. Since the interface is a web browser, many
different tools can now interact in new ways. For instance,
during post—pass assessment of the telemetry, the operator
discovers a range of telemetry that was not recovered.
This range can now be fed into the planning application
for new contact requirements. Once this is done, the range
of data can be fed into the control application to build the
necessary commands to recover the missing data. All this
can now be done at the user’s workstation.

Along with a more seamless application package, the
WBA can be made for a distributed system. For this, the
user need not always sit at only one console to perform his
tasks. Any console with access to the server and which
has an appropriate web browser can now be used. This
can easily move the operations to the user’s desk.
However, this will add complications. The users will now
have to be coordinated on what can and cannot be done at
the desk. In addition, each person will have to know what
other pieces of data other users are changing.

Security is a growing concern for everyone. Security can
be easily built into a WBA with little additional cost.
Furthermore, for most cases, security can be easily added
to an existing WBA with little effort and cost. Security for
a WBA can come in several forms. First is the security of
the data. The database server can easily be set up that
only an application local to the server machine can have
access to the data. Since the WBA application is actually
run on the server, this will lead directly to who can
manipulate the data. Therefore most of the security is on
who can have access to the server. The easiest security
measure is a physically isolated network. This is common
in secured military programs. A less isolated security
measure is to use a firewall. Typically this would be at the
gateway for an organization. This allows anyone in the
organization access to the server. A further firewall could
be put in place around the server. The clients could be

included within the firewall. In addition, the connections
to the server can use Secure Socket Layer (SSL) and
authentication. This means the data being transmitted is
encrypted to prevent others from spying on the data. The
web server can be set up to only allow connections from
specific machines. Finally, passwords can be used to
accept only allowable users to interact with the data. This
can be expanded to allow only specific users to have full
control of the data, while others can have simple query
capabilities.

5. Examples

Parameter Input GUI

The first example offered is the Parameter Input GUI, or
PIG. The PIG’s sole purpose is to track the Guidance and
Control’s (G&C) parameter loads and states. It relies on
parameter dumps as the input. A Perl script feeds the
dumps into a MySQL database. The PIG’s data is
accessed from a web page where the user can select the
processor and the parameter(s) to be viewed. The PIG
tracks when the parameters were committed to non—
volatile memory as well as resets when the non-volatile
versions of the parameters are copied into working
memory. Each parameter can be any dimension in size
and are identified by an ID as well as a mnemonic style
description. The PIG highlights changes in the
parameters. Recent additions to the PIG generates a
command script which can examine telemetry to verify the
values of the parameter dumps are not different from the
stored values. This is quite useful in comparing redundant
sides as well as syncing engineering model test beds to the
flight versions.

The PIG replaced a standard application, Parameter
Archive Manager (PAM). PAM was written in Microsoft
VBA. Itread in parameter dumps and stored the values.
The drawback to PAM was it displayed all the history for a
given parameter. PAM quickly grew cumbersome shortly
after the launch of TIMED when, due to anomalies on
board, parameters were changed quickly. The operations
team was offered two solutions, one was to make PAM
more user friendly, two was to generate a WBA. The
decision was to go with the WBA since both solutions
would take similar time to develop and the WBA had the
benefit of being able expand with later developments.

The PIG, once started took about 30 man—hours to finish.
This time can be broken down by 10 man—hours for the
data ingestion script for reading the parameter dumps into
the database, then 20 man—-hours for the web interface.
PAM took about 180 man—-hours to write, 60 man—hours
for the input ingestion and 120 hours for the user interface.

Webular
The next example of a WBA for TIMED is Webular.

Webular is in an early development phase. Currently, the
TIMED operation center uses a Microsoft VBA
application for scheduling contacts and events. TIMED is
a routine science gathering spacecraft; it is not episodical,
so most of the scheduling is done for contacts. The
regular mission for TIMED will end in early 2004. A
proposal to extend TIMED is in progress. For this
proposal, the weekends and holidays will be handled
entirely with lights out, or unstaffed contacts. The
operations team currently uses lights out contacts for off
shift contacts, but still staffs 7 days a week with 10 hour
shifts. Recently, weather in Baltimore caused the
operations team to rely on unstaffed contacts for several
days. This caused problems since people had to plow their
way into APL to plan the contacts and events. In addition,
pointing data for the main dish is only available about 36
hours in advance.

The operation team realized a distributed scheduling
system that can be accessed from home needs to be in
place for the extended mission. Several options were
available. First, using a PC anywhere type of tool that
would allow the current PC with Schedular application to
be remotely controlled. This would be quite difficult for
two reasons. The first difficulty to overcome would be
getting access through APL’s and TIMED’s firewalls. The
maintainer of Schedular believes most remote control
software relies on UDP to control a PC. This interface
will be difficult to pass through the firewalls. The second
difficulty in using remote control software would be
bandwidth. Several members of the operations team only
have dial-up access to the Internet. A PC controlling
software would require much more bandwidth than
available at 56k.

A WBA has been proposed to replace Schedular. The new
software will be named Webular. It will have the same
features as Schedular but with some look and feel
differences caused by using a browser. One drawback, as
pointed out by other operations team members, is the
database tables will be more inaccessible. Currently,
Schedular can be started in the design mode giving the
users access to the tables. The data is easily visible much
like a spreadsheet. There are tools to make the data also
available, and we will look into these tools.

Webular is still being designed. The developers expect to
need 8 man months to write Webular. Schedular took 10—
12 staff months to write. The difference here is not as
great but Webular will include additional features that
were identified to assist entirely unstaffed weekend
contacts.

Flexible Engineering Data System

The Flexible Engineering Data System (FEDS) was
inspired by the speed and ease of the development of the
PIG. The first step of the FEDS project was to modernize

the way spacecraft assessment is done today and in the
future. The task of generating plots, display of archive
telemetry, and generating assessment reports was in need
of modernization. The FEDS project was developed to
handle multiple spacecraft from multiple missions
simultaneously. In our environment it is unheard of for
separate missions to share hardware resources but with
cost savings becoming more important, FEDS could make
that change. For many spacecraft there are a few thousand
telemetry points that comprise 90% of the data that is used
in assessing the spacecraft health. It is this group of
telemetry points that are the main focus of FEDS. A
future step will be to add ties to real-time telemetry,
which will allow the real-time assessment of real-time
operations.

The heart of the FEDS project is a MySQL database that
contains decommutated telemetry that can be raw values
and/or values converted to engineering units. This
database of values can be logically thought of as two
databases, one for short—term values and a second for
summarized values. The underlying structure is one
database with many tables, but is simpler to envision as
two databases. The short—term database contains every
value available while the long—term database contains
values summarized over a minute, hour, and day.

The short—term database is needed for close scrutiny of
telemetry values and detailed reports. Some of the tables
in this database can get very big, the best solution is to
remove data as it ages, or have plenty of disk space
available. The summarized version of the data will be
available forever; this makes it easier to let go of the old
data. Once old data is removed, it is possible to regenerate
it from the raw telemetry if necessary. The generation of
reports that require all telemetry values available is
typically done in the near term so the loss of old data
should have little impact on this. If the choice was made
to never remove data from the short—term database this
could be accommodated with a little work to keep the
underlying database tables to a reasonable size. Currently
we have a 15GB, and growing, table containing a portion
of our telemetry data. This table has not caused any big
performance problems for insertion of new and retrieval of
old values and all on a 400MHz Intel processor. No old
data is being removed from this table, it is being allowed
to grow to see if MySQL or Linux will breakdown at some
point.

The long—term database contains the summarized data
over several time spans. The information in the summary
would be the min, max, average, standard deviation as
well as the number of values being summarized, and the
values at the beginning and end of the time span. The
summarized will best serve a look at data over a long term.
A major use of this data would be in the generation of
plots over a long period of time. When generating a plot

whether on paper or in a browser there are only so many
dots on the horizontal axis. If plotting a years worth of
data for a single telemetry point there could be hundreds
of thousands of values in the short—term database. With
hundreds of values needing to be plotted when there is
only one dot to represent them many values must be
discarded or summarized. With a long—term database the
summarized data is already available and ready to make
the plot very quick to generate. It’s only a matter of the
plotting application choosing the summarized data that
best fits in the requested time range.

Some may question putting telemetry values in a database
but as part of normal operations the same telemetry is
often being decommutated over and over for different
plots and reports. It makes sense to decommutated the
values once and have them on hand for quick use later.
While FEDS does not do the decommutation of telemetry
it can connect to the appropriate software to get
decommutated values that are not in the database.

Some spacecraft contain tens of thousands of telemetry
points and vast amounts of data for these spacecraft one
would decommutate and save every value for every
telemetry point. With the rapid strides in CPU power and
disk space it is only a matter of time before this will
become feasible; FEDS will be ready when this day
comes.

FEDS contains generic tools for the display of telemetry
value or plots on the fly but part of the beauty of using
MySQL to hold the data, and PHP to generate web pages
and plots, is that customized pages become very easy to
develop. Different spacecraft have different requirements
for reports and information dissemination; with the data in
a database it becomes a simple task to generate web pages
for reports covering varying time spans. The current
methodology of generating daily, weekly, monthly plots
and reports and printing them, now becomes a matter of
developing web pages to do the same thing but with a
more user friendly and flexible interface. A user can bring
up a web browser at work, home or on his palm device at
the beach and click through the standard set of pages of
information or look at specific plots or data.

As alluded to earlier, the current software for generating
reports does not lend itself to rapid development of
reports. Currently reports are generated by C++ programs
that pull raw telemetry data have it decommutated then
massage the values and generate a paper report for a
specific time period, which is printed. Using PHP to pull
values from the database and massage the data into a
report, which is output as an HTML page greatly reduces
development time. The work to take the data and generate
the information for the report is a similar between the two
methodologies but PHP is a much easier language to work
with. The web pages for a report are generated

dynamically with whatever time range the user desires.
This gives the user a flexibility that can’t be duplicated by
the old system. With the reports almost instantaneously
available via a web browser, the user not only get what he
wants when he wants, he also get it where he wants.

FEDS is currently in its infancy, but it holds much promise
for streamlining the way spacecraft assessment is done in
the near future. With the database at the heart and PHP to
generate web pages it is flexible and easy to customize to
the different needs of different spacecraft. Currently FEDS
is geared towards archived telemetry but there is a plan to
allow it to receive real-time telemetry directly which it
can then put into the database and generate strip charts of
real-time data and supply to other things such as a real-
time inference engine. Future upgrades of the FEDS
system could easily bolt on other pieces to enhance the
scope of its capabilities. One such product envisioned is an
open source, real-time inference engine SCL, developed
by Interface & Controls System of Columbia Maryland.
With this product the world of real-time reaction to real-
time events becomes possible. Once a powerful inference
engine is incorporated into a system a new world of
capabilities and possibilities can become a reality. The
SCL system will add a Real-time Fault Detection
Isolation and Resolution (FDIR) capability to the FEDS
system. With an integrated script execution engine, SCL
can detect data anomalies and trigger scripts to resolve the
problem, and/or notify the spacecraft operations personnel
and subsystem engineers in real-time via telephone, pager,
or email (using user profiles to determine information
delivery medium). These tools will make the FEDS
system autonomous with operator control a web browser
away.

